

RION QUALIFICATION CERTIFICATION

Quality management system certification: GB/T19001-2016 idt ISO19001:2015 standard (certificate No.: 128101)

- High-tech Enterprise (Certificate No.: GR201844204379)
- CE certification:AT18250EC101485
- Appearance Patent No.: ZL 202130804901.7
- Revision date: 2022-3-10

Note: Product functions, parameters, appearance, etc. will be adjusted as technology upgrades. Please contact our sales to confirm when purchasing.

PRODUCT INTRODUCTION

AKM392 triaxial accelerometer is a widely used acceleration sensor independently developed and produced by RION Technology, which can be applied to vibration testing, impact testing and other fields. The product adopts digital interface output, RS232/485/TTL is optional, and different address codes can be set. Multiple sensors are connected in series for a long distance, which is convenient for multi-point measurement and data analysis. The AKM392 is a monocrystalline silicon capacitive sensor consisting of a micromachined silicon chip, a low-power ASIC for signal conditioning, a microprocessor for storing compensation values, and a temperature sensor. This product has low power consumption, solid structure and stable output after calibration. The new electronic configuration provides solid state power for reset, providing protection against over-current. The long-term stability and deviation of the scale factor are typically less than 0.1% over the full scale range. This product has the characteristics of solid structure, low power consumption and excellent deviation stability, which ensures stable output reliability.

PRODUCT FEATURES

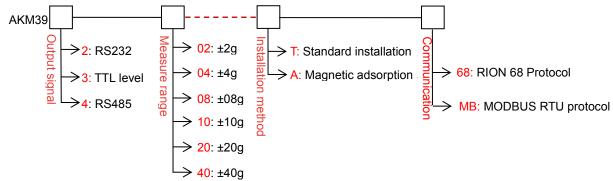
- ★ Three-axis (X, Y, Z)
- ★ Power supply voltage: 9~36V
- ★ Operating temperature: -40 ° C ~ + 85 ° C
- ★ Output signal: RS232; RS485; TTL
- ★ Shock resistance: 2000G
- ★ Storage temperature: -40 ° C ~ + 85 ° C
- ★ Excellent deviation stability, good environmental performance (shock, vibration and temperature)

Product application

★ Bridge

★ Wind power

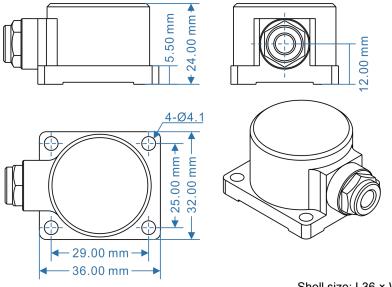
- ★ Automobile
- ★ Medical equipment
- \star Low frequency vibration and automatic monitoring
- ★ Crash recording, fatigue monitoring and prediction
- ★ Traffic system monitoring, subgrade analysis and high-speed railway fault detection


 Oligital Compass ○Digital Inclinometer ○Accelerometer ○Gyro ○North Finder ○INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

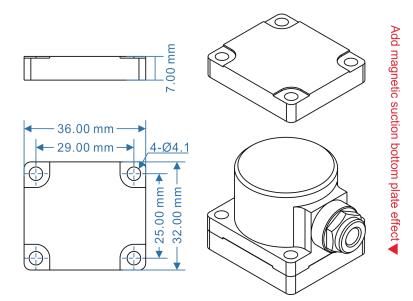
- ★ Roller
- ★ Large machinery and engine

PRODUCT PERFORMANCE

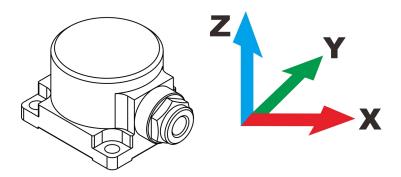
AKM392	PARAMETER UNIT					UNIT	
Measure range	±2	±4	±8	±10	±20	±40	g
Deviation calibration	<1	<1	<1	<1	<1	<1	mg
Measure axis	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	Axis
Power on/off repeatability	<2	<2	<2	<2	<2	<2	Mg (Max)
Temp. coefficient of deviation	0.01	0.01	0.01	0.01	0.01	0.01	%/℃ (typical)
Resolution/Threshold (@ 1Hz)	< 1	< 1	< 1	< 1	< 1	< 1	Mg (Max)
Nonlinearity	<0.5	<0.8	<1	<1	<1	<1	% FS (Max)
Bandwidth (3DB)	500	500	500	500	500	500	Hz
Cross-axis sensitivity	1	1	1	2	2	2	%
Transverse vibration sensitivity ratio	1	1	2	5	5	5	%
Noise density	21	21	21	86.6	86.6	86.6	µg/√Hz
Resonant frequency	2.4	2.4	2.4	5.5	5.5	5.5	kHz
Automatic output rate of 68 protocol	5H	z、10Hz、	25Hz、50	Hz、100H	z、200Hz、	500Hz、	1000Hz
MODBUS automatic output rate			10	Hz、25Hz	、50Hz		
Output interface			R	S232/RS48	35/TTL		
Communication protocol		Reife	n 68 protoc	col and MC	DBUS RT	U protocol	
Reliability			MIL-	HDBK-217	, Class II		
Impact resistance		1	00g @ 11r	ns, triaxial	(half sine	wave)	
Recovery time		< 1r	ns (1000g,	1/2 sin 1m	ns, impact o	on i-axis)	
Vibration	20	0g RMS, 2	0-2000Hz ((random n	oise, o, p, l	30 min pe	er axis)
Input (VDD _ VSS)				9-36 VE	C		
Operating current consumption			<6	60mA @ 1	2 VDC		
Protection				IP67			
Material			aer	ospace all	uminum		
Weight		Produ	ct net weig	0,	0)
Size	S	ize of mag	Product si netic adsor		W32 × H24 e plate: L36		H7mm


► PRODUCT ORDERING INFORMATION

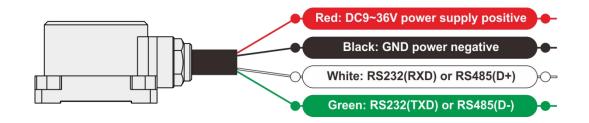
E.g: AKM392-02-T-68: indicates RS232 signal output/± 2g measurement range/standard installation mode/Ruifen68 protocol.


<u>○Inclinometer</u> <u>○Digital</u> Compass <u>○Digital</u> Inclinometer <u>○Accelerometer</u> <u>○Gyro</u> <u>○North</u> Finder <u>○INS&IMU</u> RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

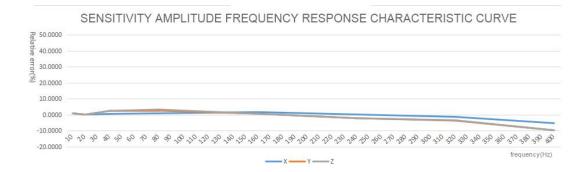
PRODUCT DIMENSION DRAWING


Shell size: L36 × W32 × H24mm Installation size: L29 × W25 × H5.5mm Mounting screws: 4 M4 screws

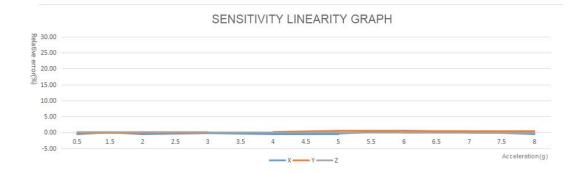
DIMENSIONS OF MOUNTING ACCESSORIES


Magnetic bottom plate size: L36 × W32 × H7mm Installation size: L29 × W25 × H7mm Installation method: strong magnetic adsorption

PRODUCT MEASUREMENT DIRECTION


ELECTRICAL CONNECTION

Col or	RED	BLACK	WHITE	GREEN
Fu	DC9 ~ 36V	GND		
nct	Positive pole of	Negative pole of	RS232(RXD)	RS232(TXD)
ion	power supply	power supply	Or RS485 (D +)	Or RS485 (D-)


▶ SENSITIVITY AMPLITUDE-FREQUENCY RESPONSE CHARACTERISTIC CURVE

(reference condition: f=20.000Hz, a=2.000G)

Reference diagram of measuring range ±8G

SENSITIVITY LINEARITY GRAPH

Communication protocol (factory default RION custom protocol)

1. Data frame format: (8 data bits, 1stop bit, no check, default rate 9600)

ldentifier (1byte)	Data length (1byte)	Address Code (1byte)	Command word (1byte)	Data domain	Checksum (1byte)
68					

Data format: hexadecimal;

Designator: fixed as 68;

Data length: length from data length to checksum (including checksum);

Address code: the address of the acquisition module, the default is 00;

Data field: change according to different content and length of command word;

Checksum: The sum of the data length, address code, command word, and data field without regard to carry.

2. Comman	d word	analysis
-----------	--------	----------

Desc.	Meaning/Example	Description
0X04	Simultaneous read	Data field (0 byte)
	acceleration command	No data domain command
	E.g: 68 04 00 04 08	
0X84	Sensor reply reply	Data domain (9byte)
	E.g: 68 0D 00 84 00 20 10 10 40	AA AB BB CC CD DD EE EF FF
	00 05 05 00 1B	AA AB BB:three character means X axis;
		CC CD DD:three character means Y axis;
		EE EF FF:3 characters means Z axis;
		The angle format is the same as the X axis or Y axis
		analysis method.
		The angle in the left example:
		X axis 02.010g,
		Y axis -04.000g,
		Z axis:+50.500g.
		00 20 10 red three bytes return the angle value for the
		X-axis , For compressed BCD codes , The upper ${\bf 0}$ of
		the first byte is the sign bit (0 positive, 1 negative)
		02 is a two-digit integer value,
		010 is a three-digit decimal value. The other axis data
		parsing methods are the same,
		This angle is resolved to +02.010g.
		10 40 00 Blue three bytes return the angle value for the
		Y axis, the analytical method is the same as the X axis.
		05 05 00 Green three bytes are the internal
		temperature value of the product, and the analytical
		method is the same as the X-axis angle.
AVAD	Cat the communication rate	1B : checksum, all data hexadecimal sum, no prefix 68.
0X0B	Set the communication rate	Data domain (1byte)
	E.g: 68 05 00 0B 03 13	Baud rate: default :9600 00 means 2400 01 means 4800
		02 means 9600 03 means 19200 04 means 38400 05 means 115200
		06 means 230400

Oligital Compass ○Digital Inclinometer ○Accelerometer ○Gyro ○North Finder ○INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

0X8B	The sensor answers the reply command	Data field (1byte) The number in the data field indicates the result of the sensor response
	Example: 68 05 00 8B 00 90	00 Success FF Fail
0X0C	Setting the Sensor Output	The factory default value of data field (1byte) is: 00
	Mode	00 response system
	Response system: the sensor	01 5Hz Auto Output Mode
	responds to the relative	02 10Hz automatic output mode
	acceleration only after the upper	03 25Hz Auto Output Mode
	computer sends the read	04 50Hz Auto Output Mode
	acceleration command	05 100Hz Auto Output Mode
	Automatic output system: after	06 200Hz Auto Output Mode
	the sensor is powered on, it	07 500Hz Auto Output Mode
	automatically outputs X, Y	(Baud rates 115200, 230400)
	acceleration, and the output	08 1000Hz Auto Output Mode
	frequency is based on the set	(230400 baud rate)
	value. For high frequency output,	09 300Hz Auto Output Mode
	set the baud rate to 115 200.	(Baud rates 115200, 230400)
	E.g:68 05 00 0C 00 11	10 400Hz Auto Output Mode
		(Baud rates 115200, 230400)
0X8C	The sensor answers the reply	Data field (1byte) The number in the data field
	command	indicates the result of the sensor response
	E.g: 68 05 00 8C 00 91	00 Success FF Fail
0X0F	Set Module Address Command	Data field (1buta)
UNUF	Set Module Address Solimitand	Data field (1byte)
UNUF	The default address of the sensor	XX module address, from 00 to EF;
UNUF	The default address of the sensor is 00,	XX module address, from 00 to EF; Note: All products have a common address: FF. If
UNUF	The default address of the sensor is 00, 1. If multiple sensors are	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485,	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UNUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately.	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the new address code after the	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the new address code after the change, otherwise the sensor will	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the new address code after the change, otherwise the sensor will not respond to the command.	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the new address code after the change, otherwise the sensor will not respond to the command. E.g: 68 05 00 0F 01 15	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UAUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the new address code after the change, otherwise the sensor will not respond to the command. E.g: 68 05 00 0F 01 15 Set the address to 01.	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and
UNUF	The default address of the sensor is 00, 1. If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to control and respond to acceleration separately. 2. If the new address is successfully changed, the address code in all subsequent command and response data packets must be changed to the new address code after the change, otherwise the sensor will not respond to the command. E.g: 68 05 00 0F 01 15	XX module address, from 00 to EF; Note: All products have a common address: FF. If you forget the set address during operation, you can use the FF address to operate the product, and

<u>○Inclinometer</u> ○Digital Compass ○Digital Inclinometer ○Accelerometer ○Gyro ○North Finder ○INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

	general addr	
0X8F	The sensor answers the reply command E.g: 68 05 00 8F 00 94	Data field (1byte) The number in the data field indicates the result of the sensor response 00 Success FF Fail
0X53	Set the save command 68 04 00 53 57	
0XD3	Set Save Command Reply 68 05 00 D3 00 57	Data field (0BYTE) The number in the data field indicates the result of the sensor response 00 Success FF Fail
0XFF	Version Software Number Directive 68 04 00 FF 03	
	Read Software Version Reply AKM392,SW V1.1	Data field (0BYTE) The number in the data field indicates the result of the sensor response Return to ASCII format, model AKM392, software version 1.1

Set up instructions and processes

1. Set the relevant parameters (baud rate, address code, automatic output frequency). At this time, only the settings are valid, but they are not saved to FLASH. They are not saved in case of power failure. A Set the address code B Set the baud rate C Set the calibration parameters D Automatic or interrogation mode

Note: When the address code and baud rate are set, they will take effect immediately (but not saved to FLASH). The following operation instructions need to change the corresponding address code and baud to set successfully.

2. Save parameters Write all parameters to FLASH

MODBUS communication protocol

1. Data frame format:

RTU mode

Communication parameters: baud rate 9600 bps (default)

Data frame: 1start bit, 8 data bits, even parity, 1stop bit

Note that please read the following items carefully before use:

1) Because the MODBUS protocol stipulates that the time between two data frames should be at least more than 3.5 bytes (for example, under the baud rate of 9600, the time is $3.5 \times (1/9600) \times 11 = 0.004$ s). However, in order to leave enough margin, the sensor increases this time to 10 ms, so leave at least 10 ms between each data frame.

Master sends command -- 10 ms idle -- Slave replies command -- 10 ms idle -- Master sends command

2) The MODBUS protocol specifies the relevant content of the broadcast address -- 0. The sensor can also accept the content of the broadcast address, but will not reply. Therefore, the broadcast address 0 can be used for the following purposes, for reference only.

1. Set the address of all the acceleration sensors of this model mounted on the bus to a certain address.

2. Set all acceleration sensors of this model mounted on the bus to the relative/absolute zero point.

3. This model of sensor is tested on the entire bus by the host sending an address of 0 to the bus to interrogate the acceleration Command, if the communication indicator can flash, the communication is normal.

3) In order to improve the reliability of the system, set the address command and set the baud rate. Both commands must be sent twice in a row to be valid. "Consecutive sending twice" means that the sending is successful twice (the slave replies each time), and the two questions and answers must be consecutive, that is, the host cannot insert other data frames between the two questions and answers, otherwise, this command will be locked.Until the power is cut off, the setting process refers to the following:

Send the set address command -- wait for the set success command sent by the slave -- (no other commands are allowed) Send the set address command again -- wait for the set success command sent by the slave -- modify successfully

4) After power-on, the above two setting commands can only be set once respectively. If it needs to be set again, it needs to be powered on again.

5) When the normal communication accumulates to a certain number of times, the communication indicator will flash once.

2. Read the holding register to get the acceleration data:

Modbus function code 03H, which is output in format 1.

Host query comma	and:	Slave response:			
Sensor address	01H	Sensor address	01	Н	
Function Code	03H	Function Code	03	Н	
Access register	00H	Data length 9 bytes	09	Н	
First address	02H	Upper 8 bits of data word 1	50H		
Data length	00H	Lower 8 bits of data word 1	46H	X-axis data	
Four words	04H	Data word 2 upper 8 bits	00H		
CRC	E5C9H	Lower 8 bits of data word 2	23H		
		Data word 3 upper 8 bits	20H	Y-axis data	
		Lower 8 bits of data word 3	00H		
		Data word 4 upper 8 bits	00H		
		Lower 8 bits of data word 4	00H	Z-axis data	
		Data word 5 upper 8 bits	00H		
		CRC	B827H		

Read Measurement Data Command Application Example 1:												
Host s	ends				01 H	03 H	00 H	02 H	00 H	04 H	E5H	C9H
Slave ı	Slave replies											
01H	03H	09H	50H	46H	00H	23H	20H	00H	00H	00H	B8H	27H

Note: The data field of the slave reply frame is 50H, 46H, 00H, 00H, 23H, 20H, 00, 00, 00

The X axis is the first to third bytes of the data field, the Y axis is the fourth to sixth bytes of the data field, and the Z axis is the seventh to ninth bytes, with the low byte first. Acceleration is expressed in points, one point corresponds to 0.001° , $0.001 \times$ (points-offset) is acceleration, and the offset is 90000.

Take the above data frame as an example: the conversion process of acceleration is as follows:

1) Get the current acceleration points. Note that the low byte is in the front, the X axis is 004650H, the Y axis is 002023H, and the Z axis is 0.

Convert to decimal, X axis: 4650H \rightarrow 18000, Y axis: 2023H \rightarrow 8227, Z axis: 0.

2) Subtract offset 90000 (note: this value is a fixed quantity), X axis: 18000-90000 =-72000, Y axis: 8227-90000 =-891773, Z axis 0-18000 =-90000.

3) The final accelerometer is obtained, X-axis: -72000 × 0.001 = -72.000G, Y-axis: -81773 × 0.001 = -81.773G, Z-axis: -90000 × 0.001 = -90 G.

3. Read input register acceleration data:

Modbus function code 04H, which is output in format 2. The user adjusts the register address and length to access the data of different axes as required. The registers are as follows:

Register address	Data content	Data type	Unit	Remark
30003	X-axis acceleration	UINT32 (R)	g	The data analysis is as follows
30005	Y-axis acceleration	UINT32 (R)	g	The data analysis is as follows
30007	Z-axis acceleration	UINT32 (R)	g	The data analysis is as follows

Read Measurement Data Command Application Example 1:

Host query comma	and:	Slave response:			
Sensor address	01H	Sensor address	01H		
Function Code	04H	Function Code	03	Н	
Access register	00H	Data length 12 bytes	0C	н	
First address	02H		94H		
Data length 6 words	00H		5FH	X-axis data	
CRC	06H		01H		
URU	D1 C8 H		00H		
			65H		
		Data domain	63H	Y-axis data	
			01H	T-dxis uala	
			00H		
			47H		
			60H	Z-axis data	
			01H		
			00H		
		CRC	1BE	4H	

In the above table, the X axis is the data field of 1-4 bytes, the Y axis is the data field of 5-8 bytes, and the Z axis is data field of 9-12 bytes. Low byte first. Acceleration is expressed in points, one point corresponds to 0.001° , $0.001 \times$ (points-offset) is acceleration, and the offset is 90000.

Take the data in the above table as an example: the conversion process of acceleration is as follows:

Get the current number of acceleration points. Note that the low byte is in the front. The X axis is 00015F94H, the Y axis is 00016365H, and the Z axis is 00016047H.

Convert to decimal, x-axis: 00015F94H \rightarrow 90004, y-axis: 00016365H \rightarrow 90981, z-axis: 00016047H-> 90183.

Subtract offset 90000 (note: this value is a fixed quantity), X axis: 90004-90000 = 4, Y axis: 90981-90000 = 981, Z axis 90183-90004 = 183.

The final accelerometer is obtained, X axis: $4 \times 0.001 = 0.004$ G, Y axis: $981 \times 0.001 = 0.981$ G, Z axis: $183 \times 0.001 = 0.183$ G.

○Inclinometer ○Digital Compass ○Digital Inclinometer ○Accelerometer ○Gyro ○North Finder ○INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

Command to set se	nsor address code:	Slave response:		
Sensor address	01H	Sensor address	01H	
Function Code	06H	Function Code	06H	
Address	00H	Register	00H	
	11H	Address	11H	
New address of the	00H	New address of the	00H	
sensor	04H	sensor	04H	
CRC	D80C	CRC	D80C	

4. Set the sensor address:

Commands must be sent twice in a row to be valid

Application example of the command for setting the sensor address:										
Host sends	01H	06H	00H	11H	00H	04H	D8H	0CH		
Slave replie	Slave replies									
01H	06H	00H	11⊦	11H 00H 04H D8 H			0CH			

Note: 0011H is the register address that controls the sensor address. In the example above, the sensor's address has been changed to 0004H, and the last two bytes are the CRC checksum.

Command to	o set sensor	address coo	de:		Slave response:						
Sensor address 01		Н		Sensor address			01H				
Function	n Code	06	Н		Function Code			06H			
		00	Н		Deviator eddaese			00H			
Register address	auuress	12	Н		Register address			12H			
Baud rate of the sensor		00	Н		Doud rate of the concer			00H			
		XX			Baud rate of the sensor			XX			
CR	С	CRC	LH		C	RC		CRC LH			
XX: A0H:48	300 A1H:9	600 A2H:1	9200	A3I	H:38400	AH:1152	200				
Application e	example of th	ne command f	or setting	g the	sensor add	lress:					
Host sends		01H	06ł	H 00H	12H	00H	A2H	A8H	76H		
Slave replies	S										
01H	06H	00H	12 H	ł	00 H	A2	2H	A8H		76H	

5. Set the sensor baud rate: (the factory default is 9600bps)

Note: 0012H is the register address that controls the sensor baud rate. In the above example, the baud rate of the sensor is set to 19200, and the last two bytes are the CRC checksum.

6. Set the character format of the sensor communication: (the factory default is even check)

Set the sensor communic	cation character format:	Slave response:				
Sensor address	01H	Sensor address	01H			
Function Code	06H	Function Code	06H			
Address	00H	Register	00H			
Address	09H	Address	09H			

oInclinometer ○Digital Compass ○Digital Inclinometer ○Accelerometer ○Gyro ○North Finder ○INS&IMU RION TECHNOLOGY SINCE2008 · Attitude & Position Solution Provider

00 H		00H
01	New format for sensor	01H
UIII		UIII
9808	CRC	9808
	01H	01H New format for sensor

Application example of zero point setting command:										
Host sends			01 H	06 H	00 H	09 H	00 H	01H	98H	08H
Slave replies										
01 H	06 H	00 H	09 H		00 H		01H	98	н	08H

The above example is to format the byte as: one start bit + 8 data bits without parity + 1stop bit Valid after power up again. Factory default is one start bit + 8 data bits even parity + 1stop bit Note: 0009 is the address of the register that controls the character format of the sensor communication. 0000H: one start bit + 8 data bits even parity + 1stop bit 0001H: one start bit + 8 data bits without check + 1stop bit

7. Set the automatic output of the sensor: (factory default 0 HZ)

Command to set sensor	address code:	Slave response:				
Sensor address	01H	Sensor address	01H			
Function Code	06H	Function Code	06H			
Address	00H	Register	00H			
	13H	Address	13H			
Output frequency	00H	Output frequency	00H			
of the sensor	XX	of the sensor	XX			
CRC	CRC LH	CRC	CRC LH			

The following table shows the valid values of the data field XX:

Frequency	0HZ	10HZ	25HZ	50HZ
Format One Output Setup Command	00H	01H	02H	03H
Format Two Output Setup Command	00H	A1H	A2H	A3H

Application example of the command for setting the sensor address:										
Host send	01H	06H	00H	13H	00H	A2H	A8H	76H		
Slave replies										
01H	06H	00H	13H		00 H	A2H		A8H		4

Note: 0013H is the register address that controls the output frequency of the sensor. In the above example, the sensor is set to output data in format two at 25 HZ, and the last two bytes are the CRC checksum.

Note: Method for mutual switching between Ruifen custom protocol and MODBUS protocol:

During power-on, the upper computer always sends 0 xAA. When the accelerometer replies 0 XAA, 0 XAA, 0 XBB, it indicates that the change is successful.

Add: 4th floor, 1 building, Cofco (Fuan) robot intelligent industrial park, 90 Dayangroad,

Fuhai street, Baoan district, Shenzhen

Tel: (86) 755 29657137 (86) 755 29761269

Fax: (86) 755 2912 3494

Email: sales@rion-tech.net

Web: www.rion-tech.net